Archives par mot-clé : LS2N

Project AILE – AI for Learning Environments

Le LS2N a obtenu un soutien financé des Actions Exploratoires du CominLab pour un projet structurant d’un an qui vise à rapprocher des chercheurs de plusieurs équipes au LS2N et à l’IMT Atlantique impliqués dans des projets en lien avec l’enseignement, l’apprentissage et la formation « en ligne ». L’objectif est de préparer l’augmentation de leurs activités dans le thème pour les cinq prochaines années.

Parmi les actions pour construire cet éco-système, différentes activités scientifiques régulières seront mises en place (tenue de séminaires transversaux, organisation d’événements, recrutement de stagiaires, participation à colloques…).

Le 21 juin 2019 se tiendra notamment un atelier francophone à la Cité des Congrés de Nantes sur le thème « Data Science, Intelligence Artificielle et Education » où le projet PASTEL sera (re)présenté.

[En savoir plus]

MappSent, measuring Text-to-Text Similarity

MappSent, Python system implementing a Mapping Approach for measuring Text-to-Text Similarity

  • Based on a linear text segment (e.g. sentence) embedding representation, its principle is to build a matrix that maps text segments in a joint-subspace where similar sets of segments are pushed closer.
  • We evaluate our approach on the SemEval 2016 and 2017 question-to-question similarity task and show that overall MappSent achieves competitive results and outperforms in most cases state-of-art methods.

Download the sources (under Apache v2 license)

PyRATA, Python Rule-based feAture sTructure Analysis

  • provides regular expression (re) matching methods on a more complex structure than a list of characters (string), namely a sequence of features set (i.e. list of dict in python jargon);
  • is free from the information encapsulated in the features and consequently can work with word features, sentences features, calendar event features… Indeed, PyRATA is not only dedicated to process textual data.
  • is fun and easy to use to explore data for research study, solve deterministic problems, formulate expert knowledge in a declarative way, prototype quickly models and generate training data for Machine Learning (ML) systems, extract ML features, augment ML models…

Download the sources (under Apache v2 license)