Archives de l’auteur :

Journée Scientifique Data Science, Intelligence Artificielle et Éducation

Présentation du projet PASTEL lors des journées scientifiques de l’Université de Nantes du Vendredi 21 juin 2019, à la Cité des Congrès, Nantes.

La journée organisée dans le cadre du projet AILE [1] avait pour objet de dresser le panel des projets de recherche en e-education dans l’écosystème numérique nantais.

La journée accueillait deux conférenciers invités Pierre Dillenbourg et Daniel Peraya. Le programme et les différent supports sont disponibles sur le site web dédié à cette journée [2].

 

Project AILE – AI for Learning Environments

Le LS2N a obtenu un soutien financé des Actions Exploratoires du CominLab pour un projet structurant d’un an qui vise à rapprocher des chercheurs de plusieurs équipes au LS2N et à l’IMT Atlantique impliqués dans des projets en lien avec l’enseignement, l’apprentissage et la formation “en ligne”. L’objectif est de préparer l’augmentation de leurs activités dans le thème pour les cinq prochaines années.

Parmi les actions pour construire cet éco-système, différentes activités scientifiques régulières seront mises en place (tenue de séminaires transversaux, organisation d’événements, recrutement de stagiaires, participation à colloques…).

Le 21 juin 2019 se tiendra notamment un atelier francophone à la Cité des Congrés de Nantes sur le thème “Data Science, Intelligence Artificielle et Education” où le projet PASTEL sera (re)présenté.

[En savoir plus]

MappSent, measuring Text-to-Text Similarity

MappSent, Python system implementing a Mapping Approach for measuring Text-to-Text Similarity

  • Based on a linear text segment (e.g. sentence) embedding representation, its principle is to build a matrix that maps text segments in a joint-subspace where similar sets of segments are pushed closer.
  • We evaluate our approach on the SemEval 2016 and 2017 question-to-question similarity task and show that overall MappSent achieves competitive results and outperforms in most cases state-of-art methods.

Download the sources (under Apache v2 license)

PyRATA, Python Rule-based feAture sTructure Analysis

  • provides regular expression (re) matching methods on a more complex structure than a list of characters (string), namely a sequence of features set (i.e. list of dict in python jargon);
  • is free from the information encapsulated in the features and consequently can work with word features, sentences features, calendar event features… Indeed, PyRATA is not only dedicated to process textual data.
  • is fun and easy to use to explore data for research study, solve deterministic problems, formulate expert knowledge in a declarative way, prototype quickly models and generate training data for Machine Learning (ML) systems, extract ML features, augment ML models…

Download the sources (under Apache v2 license)