Navigation

  • index
  • modules |
  • next |
  • previous |
  • SIDEKIT documentation »
  • Tutorials »

Previous topic

Tutorials

Next topic

How to manage the data: IdMap, Ndx, Key, Scores and StatServer

This Page

  • Show Source

Quick search

Enter the SIDEKITΒΆ

  • How to manage the data: IdMap, Ndx, Key, Scores and StatServer
    • IdMap
    • Ndx
    • Keys
    • Scores
    • StatServer
  • Parallel computation in SIDEKIT
    • Multiprocessing
    • MPI
  • Acoustic parametrization
    • 1. Save the features in HDF5 format
    • 2. The FeaturesExtractor object
    • 3. The FeaturesServer object
  • Train a Universal Background Model
    • 1. Training using EM split
    • 2. Training using simple EM with fixed number of distributions
    • 3. Training using EM split on several nodes
    • 4 Full covariance UBM
  • Train an i-vector extractor
    • 1. Get to know the algorithm with total_variability_raw
    • 2. Using a single process on one machine
    • 3. Using multiple process on one machine with Python MultiProcessing
    • 4. Using multiple process on multiple nodes with MPI
  • Extract your I-Vectors
    • 1. Extract i-vectors in a single process
    • 2. Extract i-vectors on multiple process on a single node
    • 3. Extract i-vectors on multiple nodes
  • Train a deep neural network with Theano and SIDEKIT
    • Requirement
    • Train your Feed-Forward DNN
  • Bottleneck features extraction
  • Phonetically aware Neural Network for speaker recognition

Navigation

  • index
  • modules |
  • next |
  • previous |
  • SIDEKIT documentation »
  • Tutorials »
© Copyright 2014-19, Anthony LARCHER & Sylvain MEIGNIER & Kong Aik LEE. Created using Sphinx 3.0.4.