LIBSVM Core library¶
svm¶
Copyright (c) 2000-2014 Chih-Chung Chang and Chih-Jen Lin All rights reserved.
svmutil¶
Copyright (c) 2000-2014 Chih-Chung Chang and Chih-Jen Lin All rights reserved.
-
libsvm.svmutil.
evaluations
(ty, pv)[source]¶ Calculate accuracy, mean squared error and squared correlation coefficient using the true values (ty) and predicted values (pv).
-
libsvm.svmutil.
read_svm
(svm_file_name)[source]¶ Read SVM model in PICKLE format
- Parameters
svm_file_name – name of the file to read from
-
libsvm.svmutil.
save_svm
(svm_file_name, w, b)[source]¶ Save SVM weights and biais in PICKLE format :return:
-
libsvm.svmutil.
svm_load_model
(model_file_name) → model[source]¶ Load a LIBSVM model from model_file_name and return. :param model_file_name: file name to load from
-
libsvm.svmutil.
svm_predict
(y, x, m [, options]) -> (p_labels, p_acc, p_vals)[source]¶ Predict data (y, x) with the SVM model m. options:
- “-b” probability_estimates: whether to predict probability estimates,
0 or 1 (default 0); for one-class SVM only 0 is supported.
“-q” : quiet mode (no outputs).
The return tuple contains
p_labels: a list of predicted labels
- p_acc: a tuple including accuracy (for classification),
mean-squared error, and squared correlation coefficient (for regression).
- p_vals: a list of decision values or probability estimates
(if ‘-b 1’ is specified). If k is the number of classes, for decision values, each element includes results of predicting k(k-1)/2 binary-class SVMs. For probabilities, each element contains k values indicating the probability that the testing instance is in each class.
Note
that the order of classes here is the same as ‘model.label’ field in the model structure.
-
libsvm.svmutil.
svm_read_problem
(data_file_name) → [y, x][source]¶ Read LIBSVM-format data from data_file_name and return labels y and data instances x. :param data_file_name: name of the file to load from
-
libsvm.svmutil.
svm_save_model
(model_file_name, model) → None[source]¶ Save a LIBSVM model to the file model_file_name. :param model_file_name: file name to write to :param model: model to save
-
libsvm.svmutil.
svm_train
(y, x[, options]) → model | ACC | MSE[source]¶ svm_train(prob [, options]) -> model | ACC | MSE svm_train(prob, param) -> model | ACC| MSE
Train an SVM model from data (y, x) or an svm_problem prob using ‘options’ or an svm_parameter param. If ‘-v’ is specified in ‘options’ (i.e., cross validation) either accuracy (ACC) or mean-squared error (MSE) is returned. options:
-s svm_type : set type of SVM (default 0)
0 – C-SVC (multi-class classification)
1 – nu-SVC (multi-class classification)
2 – one-class SVM
3 – epsilon-SVR (regression)
4 – nu-SVR (regression)
-t kernel_type : set type of kernel function (default 2)
0 – linear: u’*v
1 – polynomial: (gamma*u’*v + coef0)^degree
2 – radial basis function: exp(-gamma*|u-v|^2)
3 – sigmoid: tanh(gamma*u’*v + coef0)
4 – precomputed kernel (kernel values in training_set_file)
-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/num_features)
-r coef0 : set coef0 in kernel function (default 0)
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-m cachesize : set cache memory size in MB (default 100)
-e epsilon : set tolerance of termination criterion (default 0.001)
-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
-v n: n-fold cross validation mode
-q : quiet mode (no outputs)