Gaussian Model

class clustering.gauss.GaussFull(name, dim)[source]

Class to model a speaker by a gaussian with full covariance

add(features)[source]

Accumulate statistics for features :param features: numpy.ndarray

compute()[source]
Compute the mean and covariance according the statistique, the log det
of the covariance and the partial BIC PBIC.

PBIC_{x}  = \frac{n_x}{2} \log|\Sigma_x|

classmethod cst_bic(dim, alpha)[source]

Compute the BIC constant:

cst  = \frac{1}{2} \alpha \left(d + \frac{d(d+1)}{2}\right)

where d`is the feature dimension (*dim*)
and :math:`alpha a threshold (alpha)

Parameters:
  • dim – the feature dimension
  • alpha – the threshold
Returns:

the constant

classmethod merge(m1, m2)[source]

Merge two models m1 and m2. Compute the new mean (mu), covariance (cov) and PBIC partial_bic

Parameters:
  • m1 – a GaussFull object
  • m2 – a GaussFull object
Returns:

a GaussFull object

classmethod merge_partial_bic(m1, m2)[source]

Merge statistic accumulators of two a GaussFull objects, compute the new log det.

Parameters:
  • m1 – a GaussFull object
  • m2 – a GaussFull object
Returns:

the log det