xvector¶
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
-
class
nnet.xvector.
Xtractor
(speaker_number, model_archi=None)[source]¶ Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
-
sequence_network_weight_decay
= None¶ Prepapre last part of the network (after pooling)
-
-
nnet.xvector.
cross_validation
(model, validation_loader, device)[source]¶ - Parameters
model –
validation_loader –
device –
- Returns
-
nnet.xvector.
extract_idmap
(args, segment_indices, fs_params, idmap_name, output_queue)[source]¶ Function that takes a model and an idmap and extract all x-vectors based on this model and return a StatServer containing the x-vectors
- Parameters
args –
segment_indices –
fs_params –
idmap_name –
output_queue –
- Returns
-
nnet.xvector.
save_checkpoint
(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar')[source]¶ - Parameters
state –
is_best –
filename –
best_filename –
- Returns
-
nnet.xvector.
train_epoch
(model, epoch, training_loader, optimizer, log_interval, device, clipping=False)[source]¶ - Parameters
model –
epoch –
training_loader –
optimizer –
log_interval –
device –
clipping –
- Returns
-
nnet.xvector.
xtrain
(speaker_number, dataset_yaml, epochs=100, lr=0.01, model_yaml=None, model_name=None, tmp_model_name=None, best_model_name=None, multi_gpu=True, clipping=False, num_thread=1)[source]¶ - Parameters
speaker_number –
dataset_yaml –
epochs –
lr –
model_yaml –
model_name –
tmp_model_name –
best_model_name –
multi_gpu –
clipping –
num_thread –
- Returns