Source code for svm_scoring
# -*- coding: utf-8 -*-
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT. If not, see <http://www.gnu.org/licenses/>.
"""
Copyright 2014-2019 Anthony Larcher
:mod:`svm_scoring` provides functions to perform speaker verification
by using Support Vector Machines.
"""
import ctypes
import numpy
import multiprocessing
import logging
import sidekit.sv_utils
from sidekit.bosaris import Ndx
from sidekit.bosaris import Scores
from sidekit.statserver import StatServer
__license__ = "LGPL"
__author__ = "Anthony Larcher"
__copyright__ = "Copyright 2014-2019 Anthony Larcher"
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reStructuredText'
[docs]def svm_scoring_singleThread(svm_filename_structure, test_sv, ndx, score, seg_idx=None):
"""Compute scores for SVM verification on a single thread
(two classes only as implementeed at the moment)
:param svm_filename_structure: structure of the filename where to load the SVM models
:param test_sv: StatServer object of super-vectors. stat0 are set to 1 and stat1 are the super-vector to classify
:param ndx: Ndx object of the trials to perform
:param score: Scores object to fill
:param seg_idx: list of segments to classify. Classify all if the list is empty.
"""
assert isinstance(test_sv, StatServer), 'Second parameter should be a StatServer'
assert isinstance(ndx, Ndx), 'Third parameter should be an Ndx'
if seg_idx is None:
seg_idx = range(ndx.segset.shape[0])
# Load SVM models
Msvm = numpy.zeros((ndx.modelset.shape[0], test_sv.stat1.shape[1]))
bsvm = numpy.zeros(ndx.modelset.shape[0])
for m in range(ndx.modelset.shape[0]):
svm_file_name = svm_filename_structure.format(ndx.modelset[m])
w, b = sidekit.sv_utils.read_svm(svm_file_name)
Msvm[m, :] = w
bsvm[m] = b
# Compute scores against all test segments
for ts in seg_idx:
logging.info('Compute trials involving test segment %d/%d', ts + 1, ndx.segset.shape[0])
# Select the models to test with the current segment
models = ndx.modelset[ndx.trialmask[:, ts]]
ind_dict = dict((k, i) for i, k in enumerate(ndx.modelset))
inter = set(ind_dict.keys()).intersection(models)
idx_ndx = numpy.array([ind_dict[x] for x in inter])
scores = numpy.dot(Msvm[idx_ndx, :], test_sv.stat1[ts, :]) + bsvm[idx_ndx]
# Fill the score matrix
score.scoremat[idx_ndx, ts] = scores
[docs]def svm_scoring(svm_filename_structure, test_sv, ndx, num_thread=1):
"""Compute scores for SVM verification on multiple threads
(two classes only as implementeed at the moment)
:param svm_filename_structure: structure of the filename where to load the SVM models
:param test_sv: StatServer object of super-vectors. stat0 are set to 1 and stat1
are the super-vector to classify
:param ndx: Ndx object of the trials to perform
:param num_thread: number of thread to launch in parallel
:return: a Score object.
"""
# Remove missing models and test segments
existing_models, model_idx = sidekit.sv_utils.check_file_list(ndx.modelset, svm_filename_structure)
clean_ndx = ndx.filter(existing_models, test_sv.segset, True)
score = Scores()
score.scoremat = numpy.zeros(clean_ndx.trialmask.shape)
score.modelset = clean_ndx.modelset
score.segset = clean_ndx.segset
score.scoremask = clean_ndx.trialmask
tmp = multiprocessing.Array(ctypes.c_double, score.scoremat.size)
score.scoremat = numpy.ctypeslib.as_array(tmp.get_obj())
score.scoremat = score.scoremat.reshape(score.modelset.shape[0], score.segset.shape[0])
# Split the list of segment to process for multi-threading
los = numpy.array_split(numpy.arange(clean_ndx.segset.shape[0]), num_thread)
jobs = []
for idx in los:
p = multiprocessing.Process(target=svm_scoring_singleThread,
args=(svm_filename_structure, test_sv, clean_ndx, score, idx))
jobs.append(p)
p.start()
for p in jobs:
p.join()
return score