Source code for gmm_scoring

# -*- coding: utf-8 -*-
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#    
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as 
# published by the Free Software Foundation, either version 3 of the License, 
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.
"""
Copyright 2014-2019 Anthony Larcher and Sylvain Meignier

    :mod:`features_server` provides methods to test gmm models

"""
import numpy
import warnings
import multiprocessing
import ctypes
import logging

import sidekit.sv_utils
import sidekit.frontend
from sidekit.mixture import Mixture
from sidekit.statserver import StatServer
from sidekit.features_server import FeaturesServer
from sidekit.bosaris import Ndx
from sidekit.bosaris import Scores


__license__ = "LGPL"
__author__ = "Anthony Larcher"
__copyright__ = "Copyright 2014-2019 Anthony Larcher"
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reStructuredText'


[docs]def gmm_scoring_singleThread(ubm, enroll, ndx, feature_server, score_mat, seg_idx=None): """Compute log-likelihood ratios for sequences of acoustic feature frames between a Universal Background Model (UBM) and a list of Gaussian Mixture Models (GMMs) which only mean vectors differ from the UBM. :param ubm: a Mixture object used to compute the denominator of the likelihood ratios :param enroll: a StatServer object which stat1 attribute contains mean super-vectors of the GMMs to use to compute the numerator of the likelihood ratios. :param ndx: an Ndx object which define the list of trials to compute :param feature_server: sidekit.FeaturesServer used to load the acoustic parameters :param score_mat: a ndarray of scores to fill :param seg_idx: the list of unique test segments to process. Those test segments should belong to the list of test segments in the ndx object. By setting seg_idx=None, all test segments from the ndx object will be processed """ assert isinstance(ubm, Mixture), 'First parameter should be a Mixture' assert isinstance(enroll, StatServer), 'Second parameter should be a StatServer' assert isinstance(ndx, Ndx), 'Third parameter should be a Ndx' assert isinstance(feature_server, FeaturesServer), 'Fourth parameter should be a FeatureServer' if seg_idx is None: seg_idx = range(ndx.segset.shape[0]) for ts in seg_idx: logging.info('Compute trials involving test segment %d/%d', ts + 1, ndx.segset.shape[0]) # Select the models to test with the current segment models = ndx.modelset[ndx.trialmask[:, ts]] ind_dict = dict((k, i) for i, k in enumerate(ndx.modelset)) inter = set(ind_dict.keys()).intersection(models) idx_ndx = [ind_dict[x] for x in inter] ind_dict = dict((k, i) for i, k in enumerate(enroll.modelset)) inter = set(ind_dict.keys()).intersection(models) idx_enroll = [ind_dict[x] for x in inter] # Load feature file cep, _ = feature_server.load(ndx.segset[ts]) llr = numpy.zeros(numpy.array(idx_enroll).shape) for m in range(llr.shape[0]): # Compute llk for the current model if ubm.invcov.ndim == 2: lp = ubm.compute_log_posterior_probabilities(cep, enroll.stat1[idx_enroll[m], :]) elif ubm.invcov.ndim == 3: lp = ubm.compute_log_posterior_probabilities_full(cep, enroll.stat1[idx_enroll[m], :]) pp_max = numpy.max(lp, axis=1) log_lk = pp_max + numpy.log(numpy.sum(numpy.exp((lp.transpose() - pp_max).transpose()), axis=1)) llr[m] = log_lk.mean() # Compute and substract llk for the ubm if ubm.invcov.ndim == 2: lp = ubm.compute_log_posterior_probabilities(cep) elif ubm.invcov.ndim == 3: lp = ubm.compute_log_posterior_probabilities_full(cep) ppMax = numpy.max(lp, axis=1) loglk = ppMax + numpy.log(numpy.sum(numpy.exp((lp.transpose() - ppMax).transpose()), axis=1)) llr = llr - loglk.mean() # Fill the score matrix score_mat[idx_ndx, ts] = llr
[docs]def gmm_scoring(ubm, enroll, ndx, feature_server, num_thread=1): """Compute log-likelihood ratios for sequences of acoustic feature frames between a Universal Background Model (UBM) and a list of Gaussian Mixture Models (GMMs) which only mean vectors differ from the UBM. :param ubm: a Mixture object used to compute the denominator of the likelihood ratios :param enroll: a StatServer object which stat1 attribute contains mean super-vectors of the GMMs to use to compute the numerator of the likelihood ratios. :param ndx: an Ndx object which define the list of trials to compute :param feature_server: a FeatureServer object to load the features :param num_thread: number of thread to launch in parallel :return: a Score object. """ assert isinstance(ubm, Mixture), 'First parameter should be a Mixture' assert isinstance(enroll, StatServer), 'Second parameter should be a StatServer' assert isinstance(ndx, Ndx), 'Third parameter should be a Ndx' assert isinstance(feature_server, FeaturesServer), 'Fourth parameter should be a FeatureServer' # Remove missing models and test segments if feature_server.features_extractor is None: existing_test_seg, test_seg_idx = sidekit.sv_utils.check_file_list(ndx.segset, feature_server.feature_filename_structure) clean_ndx = ndx.filter(enroll.modelset, existing_test_seg, True) elif feature_server.features_extractor.audio_filename_structure is not None: existing_test_seg, test_seg_idx = \ sidekit.sv_utils.check_file_list(ndx.segset, feature_server.features_extractor.audio_filename_structure) clean_ndx = ndx.filter(enroll.modelset, existing_test_seg, True) else: clean_ndx = ndx s = numpy.zeros(clean_ndx.trialmask.shape) dims = s.shape with warnings.catch_warnings(): warnings.simplefilter('ignore', RuntimeWarning) tmp_stat1 = multiprocessing.Array(ctypes.c_double, s.size) s = numpy.ctypeslib.as_array(tmp_stat1.get_obj()) s = s.reshape(dims) # Split the list of segment to process for multi-threading los = numpy.array_split(numpy.arange(clean_ndx.segset.shape[0]), num_thread) jobs = [] for idx in los: p = multiprocessing.Process(target=gmm_scoring_singleThread, args=(ubm, enroll, ndx, feature_server, s, idx)) jobs.append(p) p.start() for p in jobs: p.join() score = Scores() score.scoremat = s score.modelset = clean_ndx.modelset score.segset = clean_ndx.segset score.scoremask = clean_ndx.trialmask return score