

Expressing the implicit instructional design language embedded in an LMS: motivations and process

Aymen Abedmouleh, Lahcen Oubahssi, Pierre Laforcade and Christophe Choquet

LIUM, Avenue Olivier Messiaen, 72085 LE MANS CEDEX 9, France

Mail: aymen.abedmouleh@univ-lemans.fr

Outline

- Introduction
- ☐ General problematic
- ☐ Our approach
- ☐ Process for identification and formalization of instructional design language
 - > HMI centered analysis
 - > Technical centered analysis
 - > Confrontation and formalization of final language
- □ Conclusion

Introduction

Context

- > Instructional design
 - Learning scenarios
 - Educational Modeling Language (EML) (as LDL, PALO, etc.)
 - VIDL (Visual Instructional Design Language) (as E²ML, CPM, etc.)
 - Standards (as IMS-LD)
- > Platforms/LMS
 - Learning Scenarios
 - Specific platforms Language (as Moodle)
 - Dedicated editors
 - Infrastructure (as Learning Design Infrastructure)

Introduction

Thesis: Domain-Specific-Modeling approach for operationalization of learning scenarios on distance learning platforms

❖ Finding:

- > Instructional Design
 - Many EMLs [Koper and Manderveld, 2004] and VIDLs [Botturi and Stubbs 2007]
 - Few standards [De Vries et al. 2006] and authoring tools
 - ■EML are generally not compatible with platforms

> Platforms

- Many difficulties to appropriate platforms by teachers designers [Ortiz et al. 2009]
- Practitioners are not familiar with this implicit instructional design domain

General Problematic

Our approach: Focusing on the platform language

1

• Identifying and formalizing of the implicit learning design language

7

 Adding a specific API to the LMS for realizing the import/ export facilities

3

• Exposing the identified language to specify new authoring tools

Our approach: Focusing on the platform language

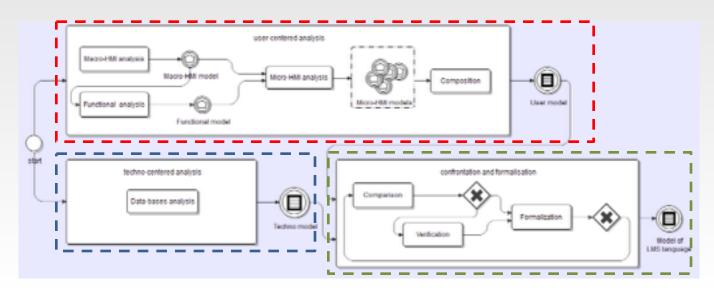
1

• Identifying and formalizing of the implicit learning design language

7

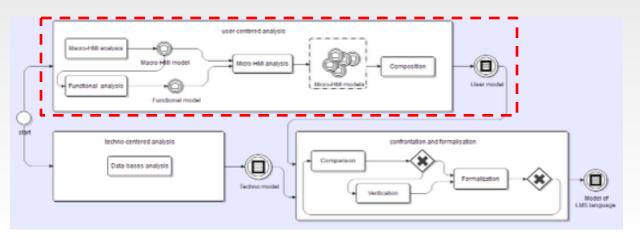
 Adding a specific API to the LMS for realizing the import/ export facilities

3


• Exposing the identified language to specify new authoring tools

Process

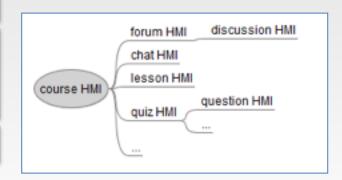
- Process objective: analyze, identify and formalize the instructional design language of LMS
- The process is composed by three main parts:
 - > HMI centered analysis
 - > Technical centered analysis
 - > Confrontation and formalization



HMI centered analysis

- ❖ Two strategies of HMI analysis:
 - analysis of existent course/situations
 - > analysis of HMI for specification of new courses
- ❖ 3 sequential analyses (macro-HMI, functional and micro-HMI)
- ❖ The composition for formalizing the model driven from the HMI centered analysis
 - ✓ ensure the identification of the visual part of Instructional design language

Macro-HMI analysis


- ❖ Identify HMI dedicated to Instructional Design (for specifying learning situations, learning scenarios, etc.)
- **❖ Model formalism :** mindmap of identified HMIs
 - > Each element of model represent the main concept of HMI
- * Approach:

Browse HMIs platform

Identify the main concepts (via the semantic analysis of HMI titles, forms

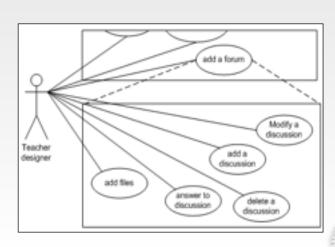
(via the semantic analysis of HMI titles, forms and navigation path)

Identify relations between concepts

Functional analysis

Identify functionalities relevant to instructional Design [administrative functionalities (display, management, etc.) are rejected]

Model formalism:


- SADT (Structured Analysis and Design Technique) model by adapting the semantic of use case diagram of UML language
- Use case diagram for representing the internal models

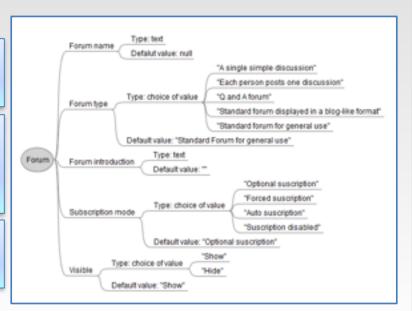
* Approach:

Analyze the HMIs widgets

Identify the pedagogical criterion (or not) of each widget

Attribute a functionality for each pedagogical widget

Micro-HMI analysis

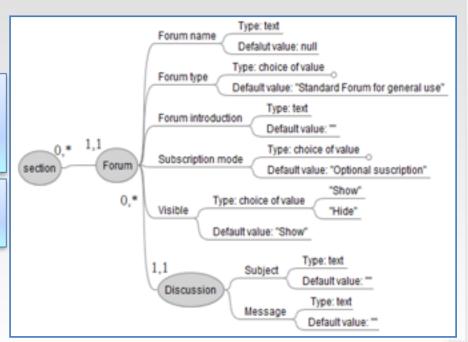


- ❖ Identify element relevant to instructional design, their attributes and their properties (type, value domain, default initializations, etc.)
- **❖ Formalism:** *mindmap*
- * Approach:

Analyze titles and details of blocks, forms, etc. and HMI component

Take into account elements and attributes required by HMI or have a pedagogical criteria

Identify all properties of elements and attributes


Composition

- ❖ Formalize the partial instructional design language derived from the HMI centered analysis by combining the micro-HMI models
- ❖ Formalism: mindmap of micro-HMI models
- * Approach:

Identify the relations between the micro-HMI models from the macro-HMI and functional models

Add multiplicities between associated models

📠 Technical centered analysis 🛍 🗥

- Several technical aspects to analyze: Data-bases, source code, course backup/restore (if exist)
- ❖ The data-base analysis consists in specifying the *Conceptual Data* **Model** in relation with Instructional Design
- > Ensuring the specification of models in conformance to platforms language

❖ Approach:

looking over all database tables

focusing on tables in relation to instructional

design

specifying the database schema

generating the Conceptual Data Model

🗝 Confrontation and formalization 🛍

- Formalize the final model of Instructional design
- The confrontation concerns:
 - > the definition of similar elements,
 - > the non-existence of some elements or attributes,
 - > the divergences about the types of attributes,
 - > etc.
- Objectives of step:
 - ✓ refine the HMI model
 - ✓ detect and correct differences
 - ✓ ensure the final model will be specified in machine interpretable. format
- ❖ Formalism: metamodel
 - > provide a basis for the specification of VIDLs and the development of dedicated editors, on top LMS languages in accordance with the DSM approach

Confrontation and formalization www

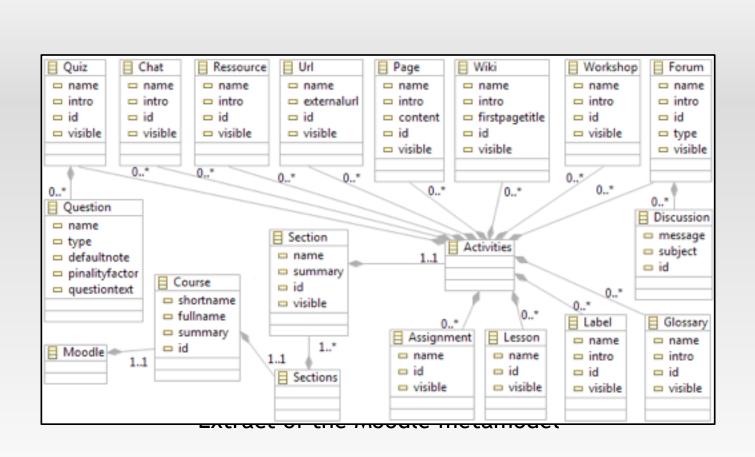
* Approach:

Verify the existence of elements of Model the verified HMI model on technical model

element by a meta-class

Verify attributes in terms of existen Model attributes by metaand type

attributes

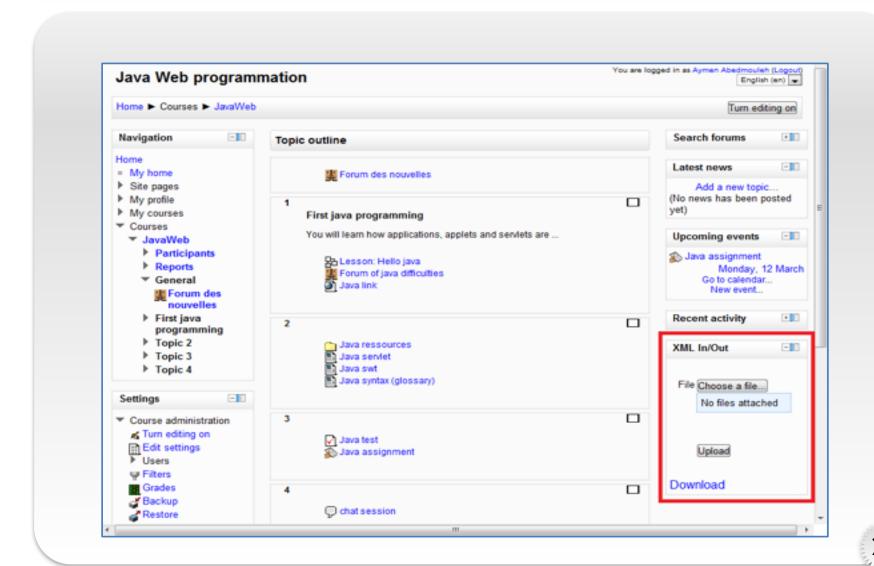

Identify relations between meta-classes (based on existent relations on HMI and technical models)

Identify and represent multiplicities on the metamodel

Université Maine Example of result process with

Conclusion

- Our approach:
 - > centered platforms
 - > based on instructional design language of platform
- Approach based on tree points:
 - >(1) Identification and formalization of instructional design language of platform by a specific process
 - >(2) Add new import/export facilities to platform
 - Specification of an XML schema equivalent to metamodel resulting from process
 - Adding new communication facilities (import/export) with external conception tools
 - > (3) Specification of new languages (VIDL) and conception tools (as graphical editors) based on the identified language and by using a DSM approach



Thank you for attention

@Contact: aymen.abedmouleh@univ-lemans.fr

