
A Pattern-matching based Approach for Problem Solving in Model
Transformations

Youness Laghouaouta, Pierre Laforcade and Esteban Loiseau
Le Mans Université, LIUM, EA 4023, France

{youness.laghouaouta, pierre.laforcade, esteban.loiseau}@univ-lemans.fr

Keywords: Model Driven Engineering, Model Transformation, Pattern Matching, Constraint Satisfaction Problem.

Abstract: As MDE (Model Driven Engineering) principles are increasingly applied in the development of complex
software, the use of constraint solving in the specification of model transformations is often required. However,
transformation techniques do not provide fully integrated supports for solving constraints, and external solvers
are not well adapted. To deal with this issue, this paper proposes a pattern-matching based approach as
a promising solution for enforcing constraints on target models. A transformation infrastructure is semi-
automatically generated and it provides support for specifying patterns, searching for match models, and
producing valid target models. Finally, a use case is presented in order to illustrate our contribution.

1 INTRODUCTION

Model Driven Engineering (MDE) proposes models
to represent all artifacts handled by a software de-
velopment process. The principle is to raise the ab-
straction level by using models as first class entities
in dedicated model management operations (e.g. mo-
del transformation, model composition, model valida-
tion. . .).

Among these operations, the transformation of
models is the most important and well-studied ope-
ration. It allows the automatic generation of tar-
get models from source ones. These models con-
form to metamodels that define the structure and well-
formedness rules. Besides, a transformation speci-
fication/definition includes descriptions of how con-
structs of source metamodels can be transformed into
constructs of target metamodels (Mens and Gorp,
2006).

Several related techniques have been proposed
in the literature (Jouault and Kurtev, 2005)(Kolovos
et al., 2008)(OMG, 2008). Despite their differences
(e.g. textual or graphical concrete syntax; declarative,
imperative or hybrid nature; rule-based or relation-
based languages. . .), their shared goal is to provide
developers with supports to specify the production of
valid target models from source ones (i.e. generally
higher-level models).

A target model is valid when it conforms to the
structuring defined by its metamodel and satisfies all
the related constraints. In practice, constraints can-

not be expressed by means of metamodel constructs
and implies the use of additional formalisms (e.g.
OCL (OMG, 2014)). Likewise, model transforma-
tion techniques are not well supported for enforcing
all constraints, and usually developers require using
external constraint solvers or libraries. However, ex-
pressing a Constraint Satisfaction Problem (CSP) is a
complex and error prone activity because developers
are faced with the domain divergence of the managed
elements (i.e. model elements in model transformati-
ons versus numeric values in constraint solvers).

Our contribution is then a practical constraint sol-
ving approach for model transformations. The ob-
jective is to allow enforcing constraint on target mo-
dels while simplifying the expression of the constraint
based problem. To this aim, a CSP is considered as a
pattern matching problem specified by means of mo-
del elements. Besides, the pattern matching is inclu-
ded in a global process that allows producing the ex-
pected target models of a given transformation scena-
rio.

The remainder of this paper is structured as fol-
lows. In Section 2, we present the context of our pro-
posal and motivate the need for a practical constraint
solving approach for model transformations. Section
3 gives an overview of the main concepts of our ap-
proach as well as relevant implementation details. In
section 4, we demonstrate the soundness of our ap-
proach using an illustrative transformation scenario.
Section 5 lists related work. Finally, Section 6 sum-
marizes this paper and presents future work.

2 MOTIVATION

This work has been motivated by the need for a fra-
mework that eases the design and the validation of a
serious game for helping children with ASD (Autis-
tic Syndrome Disorder) to improve their visual skills.
Given the specific needs of the players, it is predomi-
nant to take into account the domain experts’ directi-
ons and requirements during the design phase. This
includes the domain elements, and the rules involved
during the generation of adapted learning scenarios.

MDE provides principles for conducting collabo-
rative design and validation sessions between compu-
ters scientists and domain experts. It allows represen-
ting the domain elements as active models (i.e. child-
ren profiles, game components and game scenarios).
As a consequence, the scenarization process can be
dynamically generated by means of model transfor-
mations (i.e. the other alternative would be to design
and implement all possible configurations of scena-
rios). Indeed, the profile model and game component
model can be transformed to produce adapted scena-
rios. The latter are used to validate the generation ru-
les and will subsequently form a basis for real exploi-
tation within the game.

In previous work (Laforcade et al., 2018), we have
proposed a metamodel for structuring all the dimen-
sions related to the game. As for the generation of
scenarios adapted to children profiles, it is implemen-
ted as a model transformation written in Java/EMF
(Steinberg et al., 2009). Certainly, the proposed im-
plementation allows optimizing the validation task in
the sense that game scenarios are generated in de-
mand and without additional effort. However, the pro-
blem arises when domain experts propose modificati-
ons to the generation rules.

Indeed, it is not easy to identify the transformation
fragments impacted by the expressed changes. The
way the transformation is specified does not reveal
matches between each experts direction/requirement
(i.e. considered here as a constraint) and the transfor-
mation fragments that allow building conformed mo-
dels. In addition, the experts directions/requirements
are not easy to implement even when the transforma-
tion is specified from scratch. Several constraints are
expressed in order of priority. They are global con-
straints as they are attached to a set of model elements
and not to separated ones. In fact, the proposed model
transformation uses an external constraints solving li-
brary to tackle some very specific generation steps.

We conducted past experiences with domain ex-
perts using the aforementioned implementation. It al-
lowed us to collect feedbacks and drew two conclu-
sions. MDE principles ease the co-design and valida-

tion tasks (i.e. by structuring the domain elements and
allowing the automatic generation of adaptive scena-
rios). However, the way to implement the production
of learning scenarios is problematic (i.e. especially
when changes are expressed). A first way to deal with
this issue consisted in testing other languages/sup-
ports for model transformations. Concretely, we have
exploited the ETL language (Kolovos et al., 2008) and
the meta-language Melange (Degueule et al., 2015)
for expressing generation of scenarios.

Although ETL allows specifying the transforma-
tion in a much more structured way compared to Ja-
va/EMF (e.g. rules, operations, pre and post blocks),
the lack of a CSP (Constraint Satisfaction Problem)
support raises a significant issue. As for Melange (i.e.
a language workbench that allows expressing ope-
rational semantics by augmenting meta-classes with
behaviors), the generation concern is specified in a
modular manner which helps to identify the compo-
nents (e.g. meta-classes, operations) related to the ex-
pressed change. Also, it is possible to reuse existing
Java libraries for CSP solving. However, like the Ja-
va/EMF transformation, it is not easy to express the
direction/requirement of the expert by means of CSP.
This is due to the divergence between domains of va-
lues supported by the CSP solver (essentially integer
and real values) and the concerned model elements.

Accordingly, we have set three requirements for
the design and validation framework discussed above.
Even if we are focusing on the development of the
presented serious game, we think that the application
scope of such framework can be extended to softwa-
re/systems with complex and variant constraints. Our
goal is to provide support for:

1. the generation of target models by transforming
source ones;

2. the specification of constraints applied to target
models in a simple manner and constraint solving;

3. the modification or reconfiguration of the trans-
formation in case of constraint changes.

The next section details our proposal for a model
transformation approach that facilitates the expres-
sion of problems addressed by constraints satisfaction
(objectives 1 and 2). This proposal fits into our co-
design and validation framework. Indeed, it was de-
signed in order to meet the third objective as well.
However, details concerning the modification/recon-
figuration of the transformation when changes occur
are out of the paper scope.

3 PATTERN MATCHING FOR
CSP SOLVING IN MODEL
TRANSFORMATIONS

This section explains how a model transformation im-
plying constraint solving could be considered as a
pattern matching problem. First, we present a glo-
bal overview and give the principles of our approach.
Thereafter, we present the configuration metamodel
that defines the relevant concepts. Finally, we detail
the generation process of the infrastructure supporting
the proposed approach.

3.1 Global Overview

Basically, a CSP is defined as a set of variables, va-
riable domains (i.e. possible values for each varia-
ble) and a set of constraints. A solution is an assig-
nment of values to each variable that satisfies every
constraint. As for graph pattern matching, it is ba-
sed on (sub)graph isomorphism and requires finding
an image (i.e. match) of a given graph (i.e. pattern
graph) in another graph (i.e. source graph) (Larrosa
and Valiente, 2002).

In the literature, several work address the joint use
of CSP and pattern matching (Rudolf, 1998)(Larrosa
and Valiente, 2002)(Taentzer et al., 1999). Essenti-
ally, the graph pattern matching is expressed and re-
solved as a CSP. The aim is to improve matching per-
formance by exploiting the rich and advanced rese-
arch work done in the CSP field. In order to obtain the
CSP equivalent of a pattern matching problem, some
matches have been established between concepts of
the two domains (Rudolf, 1998):

• CSP variables correspond to the objects of the pat-
tern graph;

• variable domains correspond to the source graph
objects to be matched into;

• constraints correspond to the restrictions that ap-
ply to a graph morphism.

Our approach is based on a reverse use of these
matches. The core principle is to consider a pattern
matching problem as a high level specification of a
CSP. Hence, a CSP problem over a model can be di-
rectly expressed by means of model elements rather
than establishing non evident matches to basic varia-
ble domains supported by CSP solvers (e.g. integers,
reals).

Figure 1 gives a global overview of our approach.
A model transformation that implies constraint sol-
ving is decomposed into two steps: a pattern matching
step and a transformation step. The idea is to express

all constraints to enforce on target models through a
relevant pattern. The found match is then transformed
into valid target models. Therefore, the expression
of the pattern has to consider the following require-
ments:

• although the pattern is expressed by means of
source model elements, it has to ensure the satis-
faction of all constraints related to target models;

• a match model has to be sufficient enough to ens-
ure a complete generation of target models.

Furthermore, the expression of a pattern is decom-
posed into two parts. The structure part refers to the
elements to be matched into source models, while the
constraint part refers to the different constraints that
force the identification of a match model. This de-
coupling makes it possible to associate multiple con-
straints (i.e. classed by order of priority) to the same
pattern. Also, variation of a constraint does not af-
fect the transformation because this latter is specified
using the pattern structure.

Figure 1: Global overview of the transformation process.

Figure 2 illustrates our proposal. The source mo-
del contains a set of squares with a colored back-
ground. Each one contains numbered triangles of dif-
ferent areas. The transformation scenario consists of
piling up 4 colored triangles. Each target triangle re-
sults from the transformation of a source one while
preserving the same area. As for its background co-
lor, it corresponds to the color of the square container
of the source counterpart. Two constraints have to be
satisfied by the target model:

• the area of the contained triangle must be less than
the container one in order to produce a coherent
piling up;

• two adjacent triangles must have different colors.

For this transformation scenario, the pattern struc-
ture consists of an ordered set of four triangles. Each

Figure 2: Simple application example.

one can match one of the source triangles. As for
the constraint part, we specify that a match is valid
if the matched triangles are in descending order of
area. Furthermore, successive triangles must belong
to different squares. Once a valid match occurs, the
transformation is applied on each matched triangle for
copying it and assigning the background color of its
container. We have to note that squares are not mat-
ched by the pattern. They are derived from matched
triangles.

3.2 Configuration Metamodel

As discussed before, the pattern specification (i.e.
structure and constraints parts) underpins the propo-
sed transformation approach. The relevant informa-
tion is considered as a configuration for generating the
transformation infrastructure. It is stored in a model
which conforms to the metamodel depicted in Figure
3.

A configuration references different models (i.e.
source models, target models and the implied meta-
models). As for the pattern structure, a configuration
is defined by multiple role types. Each one can be
considered as an abstraction of a set of concrete ro-
les (i.e. pattern elements used to match source mo-
del elements) sharing same characteristics or mana-
ged as a set. Indeed, a RoleType is characterized by
the number of concrete roles nbRoles and references

Figure 3: Configuration metamodel.

a specific source model element type. For example,
the pattern depicted in Figure 2 can be expressed by
one RoleType instance. This latter references the mo-
del element type corresponding to triangles and has
an nbRoles equals to four. Therefore, the declared
role type is an abstraction of four concrete roles and
each of them is used to match a unique triangle of the
source model.

Besides, the isSequence attribute is used to ex-
press that a role type must match a sub-set of source
elements (i.e the same element cannot be matched
multiple times). While the asSequence attribute al-
lows grouping multiple elements matched by the cor-
responding roles in order to be managed as one ele-
ment (i.e. essentially for optimizing the validation
and transformation tasks).

As for to the pattern constraint part, a confi-
guration expresses if a match model is validated
against one constraint level (SimpleConstraint) or
multi-levels and prioritized constraints (Prioritized-
Constraint). A constraint is characterized by a name
that gives an idea of the validation logic. One can
note that the complete constraints specification (i.e.
by means of conditions for example) is not covered
by the proposed metamodel. Indeed, the configura-
tion model does not ensure the generation of the en-
tire transformation infrastructure. This latter includes
resources that have to be manually completed by de-
velopers. The next section details these aspects by
presenting the infrastructure generation process.

3.3 Infrastructure Generation Process

The first step to produce transformation infrastructure
is the generation of the configuration (see Figure 4).
For that, we provide developers with a GUI allowing
them to specify all paths of the managed models and
metamodels to which they conform. A configuration
model can then be automatically generated. It inclu-
des the input information as well as other automati-
cally derived data (e.g. metamodels URIs, model ele-
ments types).

As previously stated, the configuration model
have to be completed with the pattern structure as well
as with the constraints type (i.e. simple or hierarchi-
cal). To make this task easier for developers, we have
associated a concrete textual syntax to the configura-
tion metamodel and implemented a dedicated XText
editor (Bettini, 2016).

Once the configuration is completed, developers
can then ask for the automatic generation of the trans-
formation infrastructure. This is concretely done
by associating a specific EPL pattern (Kolovos and
Paige, 2017) to each constraint level (i.e. in case of
hierarchical constraints). EPL is a language that pro-
vides support for the specification and detection of
structural patterns in models that conform to diverse
metamodels (Kolovos and Paige, 2017). Essentially,
an EPL pattern consists of a set of typed roles used
to capture adequate combinations from source mo-
dels and a match condition to evaluate the validity of
a combination. In our case, typed roles are derived

from RoleType instances (i.e. with respect to nbRo-
les, type and refModel values) while the match condi-
tion is viewed as a Boolean operation that references
a considered constraint.

Besides, the sequencing of the patterns execution
is described as an ANT-based Epsilon workflow (Ko-
lovos et al., 2017). For each EPL pattern, a dedicated
target and task pair is generated. Besides, depends
properties of each generated target are specified in or-
der to prohibits the execution of a successor pattern
(i.e. with respect to constraint priorities) if a match
has already been found for the current pattern.

These details are hidden to developers by separa-
ting the patterns (i.e. generated automatically) from
some required resources to be completed. Since all
the patterns have the same structure (i.e. derived from
the configuration model), a developer needs to pro-
vide only one specification for transforming match
models. The transformation is specified by means of
EOL operations (Kolovos et al., 2006). Regarding
constraints, they are expressed in the validation re-
source. Indeed, for each constraint, an EOL operation
is generated according to pattern roles. Each of them
must be implemented by the developer in order to ex-
press the validation logic (i.e. when a model captured
by pattern roles is considered to be a valid match).

Domain restriction resources make it possible to
refine the constraints specification. Unlike the vali-
dation which applies on an entire match model, the
restriction concerns only one single role (e.g. do not
capture a triangle if its area exceeds a threshold). Fi-
nally, the remaining resource allows the developer to
assign operations to meta-classes. These operations
can be called by other resources.

The way in which the transformation infrastruc-
ture is structured brings further benefits. When a
constraint changes, the transformation resource is not
impacted. Besides, the operations associated to the
implied meta-classes can be reused when changing
the pattern structure or the transformation scenario as
long as the same metamodels are involved.

4 APPLICATION

This section is dedicated to the application of the pro-
posed approach. First, we briefly present the serious
game that motivates the overall proposal and we des-
cribe the selected use case. Then, we illustrate each
step of the process of generating the transformation
infrastructure.

Figure 4: Process for generating the transformation infrastructure.

4.1 Use Case

The application context is the development of a mo-
bile learning game dedicated to children with ASD
(Autistic Syndrome Disorder). The game intends to
support the learning of visual skills. This game is
based on mechanics from ”escape-room” games: the
player’s goal is to open a locked door to escape the
room; to this end, the user has to solve numerous puz-
zles often requiring observation and deduction. The
mobility feature will allow the learning to take place
wherever the parents, therapeutics, or child wants it.

The global domain elements required for the gene-
ration of game sessions are structured into three rela-
ted parts: game description elements, profile-related
elements, and scenario elements. The required con-
structs have been defined by a dedicated metamodel.

• game description model: it describes all the game
elements (e.g. skills, resources or exercisers, in-
game objects. . .);

• profile model: it describes a user profile;
• scenario model: it describes the targeted learning

objectives, the selected exercises and involved re-
sources; it is generated from the two first models.

In addition, this scenario is decomposed into three
different scenarios:

• objective scenario: it references the selected vi-
sual performance skills in accordance to the cur-
rent child profile.

• structural scenario: it refers to the various scenes
where game levels will take place. This scena-

rio extends the previous one. It is generated from
knowledge domain rules stating the relations bet-
ween scenes and the targeted skills they can deal
with.

• features scenario: it expresses the additional
inner-resources/fine-grained elements to be asso-
ciated to each selected scene (e.g. objects appea-
ring in a scene, their positions. . .). The features
scenario includes components of previous scena-
rios. It specifies the overall information required
by a game engine to drive the set-up of a learning
game session.

For convenience, the proposed use case is limi-
ted to the generation of the higher-level scenario (i.e.
objective scenario). The two input models (i.e. game
description and profile) conform to the metamodel de-
picted in Figure 5. It is worth noting that the presen-
ted metamodel is just an excerpt of the global one that
defines all the game constructs.

The game description model has been specified on
the base of experts’ requirements. It expresses four vi-
sual performance skills B3-B4-B8-B25 (respectively
matching object to object, matching object to image,
sorting categories of objects, making a seriation) and
their dependency relations. Figure 6 shows that the
B3 skill unlocks the B4 and B8 skills (i.e. comple-
ting B3 at its highest difficulty allows children to pro-
gress independently with the learning of the B4 and
B8 skills).

A fictive child profile model (see Figure 7) expres-
ses that the B3 skill is acquired at its highest level.
The B4 skill is at the elementary level, B8 is at the

Figure 5: Objective scenario metamodel.

expert level but is not acquired by the child, and B25
is at the beginner level. Note that we have used the
Emf2gv1 project to provide a user friendly represen-
tation of the managed models.

Figure 6: Game description model.

Regarding the generation of the objective scena-
rio, the expert has expressed four constraints to en-
force on the output model:

• Constraint 1: it has to include exactly four targe-
ted skills.

• Constraint 2: targeted skills are proposed among
the profile skills for which the child has acquired

1See http://sourceforge.net/projects/emf2gv.

Figure 7: Profile model.

the corresponding prerequisites and did not reach
a maximum level.

• Constraint 3: it would be best to propose diffe-
rent targeted skills.

• Constraint 4: if constraint 3 fails, the objective
scenario must be arranged in view of excluding
successor elements referencing the same skill.

4.2 Infrastructure Generation

In order to perform the described transformation sce-
nario, we start by generating the relevant configura-
tion. This latter can be completed by defining the
pattern structure and identifying constraints through
a dedicated Xtext editor.

For the presented use case, the pattern comprises
five roles in order to satisfy constraint 1: one Pro-
file and four Skill2Consider elements. Indeed, the
matched Skill2Consider elements are viewed as the
source equivalents of the targeted skills to be gene-
rated. As for constraints 3 and 4, they are expressed
as prioritized constraints (see Figure 8) while greatest
priority is given to the first declared constraint. Aside
from the pattern structure and constraints parts, all the
other elements are automatically generated.

Once the configuration model is completed, the
transformation infrastructure can be generated (see
Figure 9). Recalling from Section 3.3, an EPL pat-
tern is automatically generated for each constraint le-
vel and the related details are hidden to developers by
separating patterns and the required resources. For the
application example, two EPL patterns are generated
respectively for constraints 3 and 4. Listing 1 illustra-
tes an excerpt of the pattern generated for constraint 3
(i.e. proposing different targeted skills).

Regarding the operations resource, for each mo-
del element type an EOL script is provided to allow
defining specific operations. As for the domain re-
striction resource, it is possible to specify guard con-
ditions in order to restrict the possible elements to be

Figure 8: Configuration model.

Figure 9: Transformation infrastructure.

caught by a role. Listing 2 illustrates the way the con-
straint 2 is expressed as a domain restriction. The
maxLevel() and hasPrerequiste() operations are de-
fined in the context of the Skill2Consider metaclass
(Skill2ConsiderOperations.eol). The added code is
highlighted.

p a t t e r n P a t t e r n
r0 : m1! P r o f i l e

gua rd : r0 . P r o f i l e D o m a i n R e s t r i c t i o n () ,
r1 : m1! S k i l l 2 C o n s i d e r

gua rd :
r1 . S k i l l 2 C o n s i d e r D o m a i n R e s t r i c t i o n () ,

r2 : m1! S k i l l 2 C o n s i d e r
gua rd :

r2 . S k i l l 2 C o n s i d e r D o m a i n R e s t r i c t i o n () ,

r3 : m1! S k i l l 2 C o n s i d e r
gua rd :

r3 . S k i l l 2 C o n s i d e r D o m a i n R e s t r i c t i o n () ,

r4 : m1! S k i l l 2 C o n s i d e r
gua rd :

r4 . S k i l l 2 C o n s i d e r D o m a i n R e s t r i c t i o n ()
{
match : v a l i d a t e P a t t e r n a l l D i f f e r e n t (r0 , r1 , r2 , r3 , r4)
onmatch

{
t r a n s f o r m P a t t e r n (r0 , r1 , r2 , r3 , r4) ;
}

}

Listing 1: Excerpt of the EPL pattern generated for con-
straint 3.

o p e r a t i o n m1! P r o f i l e P r o f i l e D o m a i n R e s t r i c t i o n () : Boolean
{

r e t u r n t r u e ;
}
o p e r a t i o n m1! S k i l l 2 C o n s i d e r

S k i l l 2 C o n s i d e r D o m a i n R e s t r i c t i o n () : Boolean
{

r e t u r n n o t s e l f . maxLevel () and s e l f . h a s P r e r e q u i s t e () ;
}

Listing 2: Domain restriction resource.

Listing 3 depicts an excerpt of the validation re-
source. The two operations are automatically gene-
rated with respect to the constraints type and names.
We complete these operations with action blocks that
express the specific validation logic for models mat-
ched by the pattern. The allDifferent() and following-

NotMatch() operations are predefined operations. In-
deed, we defined a list of operations (e.g. sort(),
maxOccurs(). . .) which are automatically added to
the operations resource.

o p e r a t i o n v a l i d a t e P a t t e r n a l l D i f f e r e n t (r0 : m1! P r o f i l e , r1
: m1! S k i l l 2 C o n s i d e r ,

r2 : m1! S k i l l 2 C o n s i d e r , r3 : m1! S k i l l 2 C o n s i d e r , r4
: m1! S k i l l 2 C o n s i d e r) : Boolean

{
r e t u r n a l l D i f f e r e n t (Sequence { r1 , r2 , r3 , r4 }) ;

}
o p e r a t i o n v a l i d a t e P a t t e r n f o l l o w i n g N o t M a t c h (r0 :

m1! P r o f i l e , r1 : m1! S k i l l 2 C o n s i d e r ,
r2 : m1! S k i l l 2 C o n s i d e r , r3 : m1! S k i l l 2 C o n s i d e r , r4

: m1! S k i l l 2 C o n s i d e r) : Boolean
{

r e t u r n fo l l o win gNo tMa tch (Sequence { r1 , r2 , r3 , r4 }) ;
}

Listing 3: Validation resource.

As for the transformation resource (see Listing 4),
we complete it with actions to be applied to the match
model in order to produce a valid objective scenario.
A predefined launch configuration is provided to per-
form this task.

o p e r a t i o n t r a n s f o r m P a t t e r n (r0 : m1! P r o f i l e , r1 :
m1! S k i l l 2 C o n s i d e r ,

r2 : m1! S k i l l 2 C o n s i d e r , r3 : m1! S k i l l 2 C o n s i d e r , r4 :
m1! S k i l l 2 C o n s i d e r)

{
v a r s= c r e a t e S () ;
v a r os= c r e a t e O S () ;
s . o b j e c t i v e S c e n a r i o =os ;
f o r (r i n Sequence { r1 , r2 , r3 , r4 })
{

os . t a r g e t e d S k i l l s . add (c r e a t e T S (r)) ;
}

}
o p e r a t i o n c r e a t e S () : m3! S c e n a r i o
{

r e t u r n new m3! S c e n a r i o ;
}
o p e r a t i o n c r e a t e O S () : m3! O b j e c t i v e S c e n a r i o
{

r e t u r n new m3! O b j e c t i v e S c e n a r i o ;
}
o p e r a t i o n c r e a t e T S (s : m1! S k i l l 2 C o n s i d e r) : m3! T a r g e t e d S k i l l
{

v a r t s = new m3! T a r g e t e d S k i l l ;
t s . d i f f i c u l t y L e v e l =s . c u r r e n t L e v e l ;
t s . b x S k i l l =s . b x S k i l l ;
r e t u r n t s ;

}

Listing 4: Transformation resource.

Figure 10 presents the generated scenario. We can
see that it satisfies constraints 1 and 2. However, the
proposed skills do not satisfy constraint 3. In fact,
no combination of the possible skills allows enfor-
cing the constraint because the skill B3 is acquired
at its highest level. For that, the transformation ge-
nerates a scenario with respect to a less prioritized
constraint (constraint 4 in our case). Indeed, the se-
quencing of the two generated EPL patterns (i.e. for
enforcing constraints 3 and 4) is derived from the con-
figuration model and automatically expressed by me-
ans of an ANT-based Epsilon workflow (c.f. Section
3.3).

Figure 10: The generated objective scenario.

5 RELATED WORK

Our approach for constraint solving is based on ex-
pressing constraints to enforce on target models by
means of source model elements. This proposal is in-
spired from graph transformations techniques where
constraints on the involved graphs can be expressed
through application conditions (Ehrig et al., 2004).
Besides, the proposed transformation process (i.e. in-
cluding the match and transformation steps) is simi-
lar to the application of graph transformations. For
these latter, the source graph fragments concerned
with the application of a transformation are first de-
termined with respect to the LHS (Left Hand Side)
graph. Then, the matched fragments are replaced with
the structure of the RHS (Right Hand Side) graph.

The main difference is the way the pattern is defi-
ned. In fact, the pattern structure is separated from the
constraints which allows expressing different and pri-
oritized constraints for the same pattern. Besides, it is
much easier to express complex constraints within our
approach (e.g. textual syntax, feature navigation, pre-
defined operations. . .). In contrast, for graph trans-
formations the pattern is defined as one block (i.e. the
LHS graph) and constraints are expressed like sub-
graphs.

Several proposals have addressed the problem of
directly enforcing constraints on target models. Petter
et al. (Petter et al., 2009) have proposed an implemen-
tation to extend the QVT-Relations language (OMG,
2008) with constraint solving capabilities. However,
the proposal focuses on constraints related to attribute
values and disregards global constraints.

Other related work address the automatic genera-
tion of models. In this case, models are not considered
as targets of applying model transformations but are
viewed as valid instances of constrained metamodels
(Kleiner et al., 2010). Cabot et al. (Cabot et al., 2008)
have proposed an approach where metamodels and

OCL constraints are translated into a CSP and a de-
dicated solver allows producing a valid instance. Ba-
sed on similar principles, Ferdjoukh et al. (Ferdjoukh
et al., 2013) have proposed an approach for model ge-
neration while dealing with performance.

In the limited scope of the presented use case,
we have experimented the use of model generation
techniques to perform the transformation scenario.
The idea was to express the source models informa-
tion, the way to construct the target model and the ex-
pert requirements, as OCL constraints. Hence, a mo-
del generation support (we chose Grimm (Ferdjoukh
et al., 2013)) can be used to deal with the generation
of the expected objective scenario. However, the tool
failed because it does not support some essential OCL
operations.

6 CONCLUSION

In this paper, we have presented a practical approach
for constraint solving in model transformations. The
base principle is to consider pattern matching problem
as a high level specification of CSP. Furthermore, the
pattern structure is decoupled from the validation con-
straints so as to allow associating multiple constraints
to a same pattern and specifying shared transforma-
tion rules for all validation logics.

This proposal also includes a transformation infra-
structure. This latter is generated in a semi-automatic
manner and it provides support for pattern specifica-
tion, match model search, and transformation into va-
lid target models. A use case has been selected to
illustrate these tasks.

We are currently exploring the definition of pa-
rameterized patterns essentially for avoiding the pro-
blem of fixed roles numbers. Hence, the same pattern
definition can be used in various transformation sce-
narios even if involving slightly different match mo-
dels. Besides, we intend to integrate this proposal in a
co-design and validation framework for the presented
serious game.

In this case, we have to deal with two issues. First,
the regeneration of the transformation infrastructure
must consider the extent of the variation expressed
by the expert (e.g. adding a constraint must imply
changing the validation resource without impacting
the transformation and operations resources). Second,
we found that even if several solutions are possible,
the same scenario is always generated for different
executions. This confuses the validation task and pre-
vents the experts from considering several illustrati-
ons. Currently, we can set the transformation infra-
structure in an iterative mode to allow the generation

of all possible targets. Moreover, we are planning to
implement a solution to address random generation.

REFERENCES
Bettini, L. (2016). Implementing domain-specific languages

with Xtext and Xtend. Packt Publishing Ltd.
Cabot, J., Claris, R., Riera, D., et al. (2008). Verification of

uml/ocl class diagrams using constraint programming.
In First International Conference on Software Testing
Verification and Validation, ICST 2008., pages 73–80.
IEEE.

Degueule, T., Combemale, B., Blouin, A., Barais, O., and
Jézéquel, J.-M. (2015). Melange: A meta-language
for modular and reusable development of dsls. In
Proceedings of the 2015 ACM SIGPLAN Internatio-
nal Conference on Software Language Engineering,
pages 25–36. ACM.

Ehrig, H., Ehrig, K., Habel, A., and Pennemann, K.-H.
(2004). Constraints and application conditions: From
graphs to high-level structures. In International Con-
ference on Graph Transformation, pages 287–303.
Springer.

Ferdjoukh, A., Baert, A.-E., Chateau, A., Coletta, R., and
Nebut, C. (2013). A csp approach for metamodel
instantiation. In 2013 IEEE 25th International Con-
ference on Tools with Artificial Intelligence, pages
1044–1051. IEEE.

Jouault, F. and Kurtev, I. (2005). Transforming models
with atl. In International Conference on Model Driven
Engineering Languages and Systems, pages 128–138.
Springer.

Kleiner, M., Del Fabro, M. D., and Albert, P. (2010). Model
search: Formalizing and automating constraint sol-
ving in mde platforms. In European Conference on
Modelling Foundations and Applications, pages 173–
188. Springer.

Kolovos, D., Rose, L., Garcia-Dominguez, A., and Paige,
R. (2017). The epsilon book (2017).

Kolovos, D. S. and Paige, R. F. (2017). The epsilon pattern
language. In 9th IEEE/ACM International Workshop
on Modelling in Software Engineering, MiSE@ICSE
2017, pages 54–60. IEEE.

Kolovos, D. S., Paige, R. F., and Polack, F. A. (2006). The
epsilon object language (eol). In European Confe-
rence on Model Driven Architecture-Foundations and
Applications, pages 128–142. Springer.

Kolovos, D. S., Paige, R. F., and Polack, F. A. (2008).
The epsilon transformation language. In International
Conference on Theory and Practice of Model Trans-
formations, pages 46–60. Springer.

Laforcade, P., Loiseau, E., and Kacem, R. (2018). A model-
driven engineering process to support the adaptive ge-
neration of learning game scenarios. In Proceedings of
the 10th International Conference on Computer Sup-
ported Education.

Larrosa, J. and Valiente, G. (2002). Constraint satisfaction
algorithms for graph pattern matching. Mathematical
Structures in Computer Science, 12(4):403–422.

Mens, T. and Gorp, P. V. (2006). A taxonomy of model
transformation. Electronic Notes in Theoretical Com-
puter Science, 152:125–142.

OMG (2008). Meta object facility (mof) 2.0 query/view/-
transformation specification.

OMG (2014). Object constraint language 2.4 specification.
Petter, A., Behring, A., and Mühlhäuser, M. (2009). Solving

constraints in model transformations. In International
Conference on Theory and Practice of Model Trans-
formations, pages 132–147. Springer.

Rudolf, M. (1998). Utilizing constraint satisfaction techni-
ques for efficient graph pattern matching. In Interna-
tional Workshop on Theory and Application of Graph
Transformations, pages 238–251. Springer.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

Taentzer, G., Ermel, C., and Rudolf, M. (1999). The agg ap-
proach: Language and tool environment. Handbook of
graph grammars and computing by graph transforma-
tion, 2:551–603.

