
THE ALLIES EVALUATION
HOW TO RUN YOUR SYSTEM ON THE BEAT PLATFORM

A PREPRINT

Anthony Larcher
LIUM - Le Mans Université

Avenue Olivier Messiaen
F-72085 – LE MANS CEDEX 9

anthony.larcher@univ-lemans.fr

Olivier Galibert
LNE

Olivier.Galibert@lne.fr

Andre Anjos, Samuel Gaist
IDIAP

andre.anjos@idiap.ch, samuel.gaist@idiap.ch

March 9, 2020

ABSTRACT

This document describes how to run the lifelong diarization task for the ALLIES evaluation. For this
task, sources have to be uploaded to the BEAT platform available at IDIAP. This guide, dedicated to
ALLIES evaluation’s participants describes how to set up a local BEAT platform in order to develop
your own speaker diarization system and how to push it to the online platform where the evaluation is
to be run.
This documentation and all usefull files are available on this ALLIES evaluation webpage.

1 How to setup a local platform for system development

1.1 Before installation

1. Download, the two documents available on the ALLIEs evaluation webpage
• the Rules for Supervisor available here
• the licence to access the development data that is available here

You have then to complete those documents and send them to the organizers1.
2. You will then receive credentials to download the training and development data from this link2

3. Install a local BEAT platform on your facilities. This environment is required to:
• download the baseline system and run it on the development data;
• develop your own system and integrate it in the BEAT framework;
• push your algorithm on the online BEAT platform in order to submit your system for evaluation.

1.2 Install a local BEAT platform

To develop your system, we recommend to set up a local installation of the BEAT platform. This installation requires
three steps:

1. Install CONDA on your computer.
1lifelong-speaker-evaluation@univ-lemans.fr
2https://allies.kervella.org

https://projets-lium.univ-lemans.fr/allies/cool_timeline/allies-evaluation/
https://projets-lium.univ-lemans.fr/allies/cool_timeline/allies-evaluation/
https://projets-lium.univ-lemans.fr/allies/wp-content/uploads/sites/4/2020/03/ALLIES_rules_for_supervisor.pdf
https://projets-lium.univ-lemans.fr/allies/wp-content/uploads/sites/4/2020/03/ALLIES_agreement-dev-corpus.pdf
mailto:lifelong-speaker-evaluation@univ-lemans.fr
https://allies.kervella.org/
lifelong-speaker-evaluation@univ-lemans.fr
https://allies.kervella.org

A PREPRINT - MARCH 9, 2020

2. Setup a conda environment dedicated to the BEAT platform by following the following instructions
3. Pull the baseline system and run a lifelong diarization evaluation

1.2.1 Install CONDA

CONDA’s documentation can be found at urlhttps://docs.conda.io/en/latest/.

1.2.2 Setup a CONDA environment for BEAT

Download the file beat.yml from here. Run the following command from a terminal:

conda env create −f beat.yml

Note that the environment created in this process includes the same exact python modules that are available on the
on-line platform. In case other modules are required to run your system please contact the organizers.

Activate the CONDA environment (named “beat”)

$ conda activate beat
(beat) $

All further instructions assume you have the environment where BEAT packages are installed properly activated.

If your machine has a graphical interface, you can check the installation of the BEAT platform is working by launching:

beat editor start

This will start the graphical editor. At this stage, you should not visualize any element in the EDITOR.

1.2.3 Pull the baseline system and run

The BEAT editor allows you to implement and test your solution locally on either a reduced or different dataset. Once
you have everything working as expected, push the resulting code to the platform and execute it there, for validation.

The following steps describe the procedure to start from an existing experiment and build on that.

beat exp pull anthony_larcher/anthony_larcher/diarization_ll_dev/1/diarization_ll_dev

This will pull the experiment as well as all its dependencies from the platform so that it can be edited (and run) locally.

You now have a BEAT prefix

Now, you need to specify the path to your development data to the BEAT experience. To do this, open the file

databases/allies-development-data-sd/1.json

and change the line:

"root_folder": "/lium/corpus/audio/bn/fr/ALLIES/dev"

to set your path to the ALLIES development data as follow

"root_folder": "mypath_to_allies_data/

To run the ALLIES speaker diartization enter the following command:

beat exp run anthony_larcher/anthony_larcher/diarization_ll_dev/1/diarization_ll_dev &> output.log

The allies-baseline_output.log should be similar to the one available here. Given the quantity of data to process,
the experiment might run for 10 hours depending on the number of CPU available on your facilities.

2 Implement your own system in the ALLIEs environment

You now have a running baseline on the ALLIEs development data. The following steps will show you:

2

https://projets-lium.univ-lemans.fr/allies/wp-content/uploads/sites/4/2020/03/beat.yml
https://projets-lium.univ-lemans.fr/allies/cool_timeline/allies-evaluation/

A PREPRINT - MARCH 9, 2020

1. how to fork the baseline experiment in order to create your own;
2. how to edit the code to implement your system

Note that values within angle brackets (< and >) will depend on the asset name. Replace these values by appropriate
actual values.

2.0.1 Create your own experiment and algorithms

Run the following command to create a fork of the baseline experiment.

(beat) $ beat experiment fork anthony_larcher/anthony_larcher/diarization_ll_dev/1/diarization_ll_dev
<your-beat-user-id>/<experiments>/<toolchain-author>/<toolchain-name>/<toolchain-version>/<experiment-name>

for instance: beat --prefix ./ experiment fork anthony_larcher/anthony_larcher/diarization_ll_dev/1/diarization_ll_dev
anthony_larcher/anthony_larcher/diarization_ll_dev/1/allies_test_fork

creates a new exeperiment anthony_larcher/anthony_larcher/diarization_ll_dev/1/allies_test_fork

Fork the algorithm you want to modify amongst the following:

• anthony_larcher/features_extractor/1

• anthony_larcher/diar_train/1

• anthony_larcher/diar_lifelong/1

Here is an example that shows how to fork the main block of lifelong learning.

(beat) $ beat algorithm fork anthony_larcher/diar_train/1 <your-beat-user-id>/
<algorithm>/<version>

For instance: beat --prefix ./ algorithms fork anthony_larcher/diar_lifelong/1 anthony_larcher/diar_lifelong/2

This will allow you to use your own modified algorithm for your fork.

Note that you will have to update your experiment fork in order to use your own algorithm(s). This can be done through the BEAT
editor or by editing the JSON file of your own experiment.

Note that you do not need to fork an algorithm, you can use a different one as long as its inputs and outputs match the one you want
to replace.

2.0.2 Edit the code:

(beat) $ beat algorithm edit <author>/<algorithm>/<version>

This will open your default configured editor to edit the code of the algorithm passed in parameter. If not editor is set, use the
following command to set a default editor:

(beat) $beat conf set editor vim

Note that you can visualize the BEAT configuration by entering:

(beat) $beat conf show

To edit any other asset, just start the editor, optionally pointing to the prefix of interest

(beat) $ beat --prefix <path/to/prefix> editor start

This will start the BEAT editor so that you will have an easy access to all locally available assets. You’ll be able to edit them visually.
The editor also allows to start your favorite editor for code or documentation modification.

2.0.3 Run an experiment locally

You can run your own exeperiment locally by entering:

$ beat exp run <experiment-author>/experiments/<toolchain-author>/<toolchain-name>/
<toolchain-version>/<experiment-name>

2.0.4 Submit your experiment on the on-line platform

Once the experiment runs successfully on your machine, you can upload it to the online platform and run it there.

3

A PREPRINT - MARCH 9, 2020

$ beat exp push <experiment-author>/experiments/<toolchain-author>/<toolchain-name>/
<toolchain-version>/<experiment-name>
$ beat exp start <experiment-author>/experiments/<toolchain-author>/<toolchain-name>/
<toolchain-version>/<experiment-name>

You can monitor the execution of your experiment at any moment with:

$ beat exp monitor <experiment-author>/experiments/<toolchain-author>/<toolchain-name>/
<toolchain-version>/<experiment-name>

We recommend to run your expriment on the on-line platform in order to make sure everything runs smoothly.

3 Overview of the system and environment

The toolchain developed to evaluate the autonomous systems is described in Figure 1 this toolchain can be described in four parts:

• the input datasets (red on Figure 1);

• the three blocks of the system (green on Figure 1 to be modified to include your own system);

• the user simulation (white on Figure 1);

• the evaluation blocks (blue on Figure 1)

Note that input datasets, user simulation and evaluation blocks are fixed and guaranty reproducibility of the experiments. Participants
are free to edit the three blocks of the system in order to include their own code. Once your code is included in this toolchain, the
system will run automatically and the BEAT platform is responsible for managing the data exchanges between the different blocks of
the architecture.

Thus, you don’t need to take care about the communication between blocks, especially, the interaction between the system and the
user simulator is automatic.

Figure 1: Architecture of the ALLIES toolchain for autonomous lifelong learning system evaluation.

3.1 Input datasets

Two datasets are available:

diarization train this dataset includes audio files together with information about the TV shows and a manual segmentation
available for supervised training. This dataset is available for the initial training of the system and later for system
adaptation all along the system life-cycle. Audio files from this dataset can be access anytime on-demand.

diarization lifelong This dataset is available in a sequential manner and used for evaluation of the system. Each audio file is
provided to the system without any other information. For each file, the system has to return an hypothesis that will be
evaluated.

3.2 System blocks (the core part)

This section describes the part of the toolchain your system has to be included in. The architecture of the system has been developed
according to standard speaker diarization architectures. In order to facilitate the development of your system and to provide a baseline,
a complete implementation of a speaker diarization system using SIDEKIT [1] and S4D [2] is provided on the allies evaluation web
page

4

https://projets-lium.univ-lemans.fr/allies/cool_timeline/allies-evaluation/
https://projets-lium.univ-lemans.fr/allies/cool_timeline/allies-evaluation/

A PREPRINT - MARCH 9, 2020

The lifelong learning system is composed of three modules. Inputs and output formats of the modules are described in the following
sections.

3.2.1 Feature extraction module

This module is referred to as feature_extraction and is implemented in the file algorithms/allies/features_extractor/1.py.
As for every module, the main function is process. Prototype of this function MUST not be modified in order to guaranty your
toolchain will execute properly.

All audio files will go through this block that is duplicated in the toolchain in order to guaranty that training files and test files are
processed the exact same manner;

input MUST NOT be modified

output a numpy.ndarray

def process(self, inputs, dataloader , outputs):

G e t t h e i n c o m i n g wav f o r m a s a numpy . n d a r r a y
speech = inputs["speech"].data.value

label, energy, cep, _ = self.fe.extract_from_signal(speech, 16000)
C o n c a t e n a t e e n e r g y and c e p
feat = numpy.hstack([energy[:, None], cep])
Add d y n a m i c f e a t u r e s
feat = self.fs._delta_and_2delta(feat)
S m o o t h t h e l a b e l s
label = sidekit.frontend.vad.label_fusion(label)

outputs["features"].write({"value": feat})

a l w a y s r e t u r n T r u e , i t s i g n a l s BEAT t o c o n t i n u e p r o c e s s i n g
return True

The code above shows how to retrieve incoming wave form from the dataloader object and how to return the output features for the
next modules. Note that both inputs and outputs (variable speech and feat) in this code are numpy.ndarray.

3.2.2 Initial training module

The initial training of the system is implemented in the file algorithms/allies/diar_train/1.py. The process method is the
main one. From this method you can access all data from the diarization_train set and use the human annotation provided with the
data. This block outputs a model.

Inputs and outputs of this module.

inputs

features the numpy.ndarray output from the Feature extraction module;
uem an object including the content of a UEM file (parts of speech which must be processed and could be evaluated.

Format of UEM is describred in section 5.
file_info a dictionary object that contains three fields: file_id, supervision and time_stamp. Those three fields are strings

and give a unique file identification, the kind of supervision that can be performed on the file (only for diar_lifelong
dataset) and the date of the first broadcast of the curent TV show respectively.

speakers is composed of three aligned lists that describe all speech segments from the associated wav file. the lists are:
speaker that contains the speaker ID of each segment, start_time and stop_time which are the time of beginning and
end of each speech segment in seconds

output

model your model as a string. An easy way to serialize your model as a string is to use the pickle module as done in the
baseline system. This module allows you to include dictionaries, numpy.ndarray and neural networks easily (see the
baseline system for an example of how to serialize your model).

5

A PREPRINT - MARCH 9, 2020

3.2.3 Lifelong learning module

This block receives the initial model from the diar_train block and process all files from the diarization_lifelong dataset, one at a
time. This module is the one managing the interaction between the human in the loop (user simulation) and your system.

Inputs and outputs of this module.

inputs

model your model, output from the training module
features the numpy.ndarray output from the Feature extraction module, this is the audio data to process
processor_uem an object including the content of a UEM file (parts of speech which must be processed and will be

evaluated (described in section 5).
processor_file_info a dictionary object that contains three fields: file_id, supervision and time_stamp. Those three fields

are strings and give a unique file identification, the kind of supervision that can be performed on the file and the date
of the first broadcast of the curent TV show respectively.

output

adapted_speakers is the final hypothesis returned by your system for the current TV show. It is composed of three
aligned lists that describe all speech segments frim the associated wav file. the lists are: speaker that contains the
speaker ID of each segment, start_time and stop_time which are the time of beginning and end of each speech
segment in seconds

Additionally, this lifelong learning module can access all data from the diarization_train dataset. This data can be accessed via
the following inputs:

Additional inputs

train_features the numpy.ndarray output from the Feature extraction module (features from the training set).
train_uem an object including the content of a UEM file (parts of speech which must be processed and could be evaluated;
train_file_info a dictionary object that contains three fields: file_id, supervision and time_stamp. Those three fields

are strings and give a unique file identification, the kind of supervision that can be performed on the file (only for
diar_lifelong dataset) and the date of the first broadcast of the curent TV show.

train_speakers is composed of three aligned lists that describe all speech segments frim the associated wav file. the lists
are: speaker that contains the speaker ID of each segment, start_time and stop_time which are the time of beginning
and end of each speech segment in seconds

Example on how to access lifelong learning data and training data is provided in the baseline system.

Interacting with the human in the loop.
Each file from the lifelong learning dataset comes with a flag stored in the file_info variable and named supervision, that
specifies the mode of human assisted learning for this file. The mode can be:

active the system is allowed to ask questions to the human in the loop;

interactive once the system produces a first hypothesis, the human in the loop provides corrections to the system to improve the
hypothesis;

none Human assisted learning is OFF for this file. The system can still adapt the model in an unsupervised manner.

While processing an audio file, the system can perform unsupervised learning and goes through the the Human Assisted Learning
process if supervision mode is either active or interactive.

The code below shows how to interact with the user simulation:

if supervision in ["active", "interactive"]:
human_assisted_learning = True

if not human_assisted_learning:
P e r f o r m u n s u p e r v i s e d l e a r n i n g
self.model, self.global_diar = unsupervised_model_adaptation(features,

file_id,
data_loaders ,

6

A PREPRINT - MARCH 9, 2020

self.model,
self.global_diar ,
current_s4d_segmentation
)

I f human a s s i s t e d l e a r n i n g mode i s on (a c t i v e o r i n t e r a c t i v e l e a r n i n g)
l o o p u n t i l t h e u s e r o r t h e s y s t e m s t o p t h e p r o c e s s
while human_assisted_learning:

C r e a t e a f a k e r e q u e s t t h a t i s u s e d t o i n i t i a t e i n t e r a c t i v e l e a r n i n g
For t h e c a s e o f a c t i v e l e a r n i n g , t h i s r e q u e s t i s o v e r w r i t t e n b y y o u r s y s t e m
request = {"request_type": "toto", "time_1": 0.0, "time_2": 0.0}

if supervision == "active":
The s y s t e m c a n s e n d a q u e s t i o n t o t h e human i n t h e l o o p
b y u s i n g an o b j e c t o f t y p e r e q u e s t
The r e q u e s t i s t h e q u e s t i o n a s k e d t o t h e s y s t e m
request = generate_system_request_to_user(self.model,

self.global_diar ,
current_s4d_segmentation)

p a c k a g e t h e r e q u e s t t o b e s e n t t o t h e u s e r s i m u l a t i o n t o g e t h e r w i t h
t h e ID o f t h e f i l e o f i n t e r e s t and t h e c u r r e n t h y p o t h e s i s
message_to_user = {

"file_id": file_id, # ID o f t h e f i l e t h e q u e s t i o n i s r e l a t e d t o
"hypothesis": current_hypothesis , # The c u r r e n t h y p o t h e s i s
"system_request": request, # t h e q u e s t i o n f o r t h e human i n t h e l o o p

}
S e n d t h e r e q u e s t t o t h e u s e r s i m u l a t i o n and r e c e i v e t h e a n s w e r
human_assisted_learning , user_answer = loop_channel.validate(message_to_user)

T a k e i n t o a c c o u n t t h e u s e r a n s w e r t o g e n e r a t e a new h y p o t h e s i s
and p o s s i b l y u p d a t e t h e m o d e l
self.model, self.global_diar , current_s4d_segmentation = online_adaptation(self.model,

self.global_diar ,
features ,
current_s4d_segmentation ,
request, user_answer)

4 From development phase to evaluation

Each participant team can choose to run three different systems for the final evaluation. On the 1st of June 2020, systems will be
frozen and participants must indicate the name of the three BEAT experiments to run as their submission.

5 UEM format description

The UEM format is a format describing the time ranges in the source audio files the system should be working on. It is used to give
the boundaries of the shows but also to exclude the zones with overlapping speakers. It’s a space-separated columns format, with
four columns:

1. File name without the extension

2. Channel number (always 1)

3. Start time of zone to diarize

4. End time of zone to diarize

Example extract:

TV8_LaPlaceDuVillage_2011-03-14_172834 1 407.621 471.166
TV8_LaPlaceDuVillage_2011-03-14_172834 1 471.666 478.396
TV8_LaPlaceDuVillage_2011-03-14_172834 1 476.920 493.571
TV8_LaPlaceDuVillage_2011-03-14_172834 1 492.927 495.556

7

A PREPRINT - MARCH 9, 2020

6 MDTM format description

The MDTM format is a format describing the reference or an hypothesis for the speaker identity in a file. It’s a space-separated
format, with eight columns:

1. File name without the extension

2. Channel number (always 1)

3. Start time of the speaker range

4. Duration of the speaker range (beware, not end time)

5. Event type (always "speaker")

6. Event subtype (always "na")

7. Gender ("adult_male" or "adult_female", "unknown" for hypothese, not evaluated in any case)

8. Speaker id

In the references, the speaker id is the speaker name of the form "Firstname_LASTNAME", in the hypothesis it is a unique, space-less,
identifier per speaker.

Example extract:

TV8_LaPlaceDuVillage_2011-03-14_172834 1 407.621 15.040 speaker na adult_male Michel_THABUIS
TV8_LaPlaceDuVillage_2011-03-14_172834 1 422.661 18.148 speaker na adult_male Philippe_DEPARIS
TV8_LaPlaceDuVillage_2011-03-14_172834 1 440.809 30.357 speaker na adult_male Michel_THABUIS
TV8_LaPlaceDuVillage_2011-03-14_172834 1 471.666 6.730 speaker na adult_male Philippe_DEPARIS

References

[1] Anthony Larcher, Kong Aik Lee, and Sylvain Meignier. An extensible speaker identification sidekit in python. In 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5095–5099. IEEE, 2016.

[2] Pierre-Alexandre Broux, Florent Desnous, Anthony Larcher, Simon Petitrenaud, Jean Carrive, and Sylvain Meignier. S4d:
Speaker diarization toolkit in python. In Annual Conference of the International Speech Communication Association
(Interspeech), 2018.

8

	How to setup a local platform for system development
	Before installation
	Install a local BEAT platform
	Install CONDA
	Setup a CONDA environment for BEAT
	Pull the baseline system and run

	Implement your own system in the ALLIEs environment
	Create your own experiment and algorithms
	Edit the code:
	Run an experiment locally
	Submit your experiment on the on-line platform

	Overview of the system and environment
	Input datasets
	System blocks (the core part)
	Feature extraction module
	Initial training module
	Lifelong learning module

	From development phase to evaluation
	UEM format description
	MDTM format description

